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Abstract- In this paper, we model a collective collaborative robotic system which acts as a distributed system, solving the problem which a 
single robot cannot. A system consisting of n processes is modeled by a respective set of n communicating finite-state machines (CFSMs). 
Robotic processes often run concurrently and communicate with each other to accomplish a common goal. We begin from a specification 
of a set of robotic tasks in the form of CFSMs. As opposed to the traditional product automaton, built from a given specification of CFSMs, 
whose state-space explodes, we build a state-compressed model out of CFSMs. The model is composed by simulating the specified set of 
CFSMs in a global environment into a corresponding set of what are defined as communicating minimal prefix machines (CMPMs). The 
states of CMPMs form a well-founded, partial order. This model truly represents sequence, choice/non-determinism and concurrency 
exhibited by the concurrent robotic system tasks. The model provides a sound platform for performing state exploration/model-checking 
without exponential state explosion to verify both safety and liveness properties of the given set of robotic tasks. 

Index Terms— CCR, CFSMs, CMPMS, Safety, Liveness, exponential state explosion 

——————————      —————————— 

1 INTRODUCTION                                         
 

1.1 COLLECTIVE AND COLLABORATIVE   
                 ROBOTIC SYSTEM. 

In this paper, we model a collective collaborative robotic sys-
tem (CCRS) which acts as a distributed system solving the prob-
lem which a single robot cannot. Robotic processes often run con-
currently and communicate with each other to accomplish a com-
mon goal. This model truly represents sequence, choice and con-
currency, exhibited by the concurrent robotic system tasks. Here, 
we propose how collective collaboration in a simple reactive can 
be obtained through the exploitation of synchronous local and 
global communication of entire group of robots. It is significantly 
faster than a product-based model and its minimal set of parame-
ters allows identifying the effect of characteristics of individual 
robots on the team performance. This model provides a sound 
platform for performing state exploration/model-checking without 
exponential state explosion, and also to verify fault-tolerant prop-
erties, namely safety and liveness, of the given set of robotic tasks. 

 

 

1.2 WHAT IS A CCRS? 

 
CCRS has been defined as a novel approach to the coordination of 
few numbers of robots and as the study of how few numbers of ro-
bots can be designed to obtain a desired collective behavior which 
emerges from local interactions among agents representing those 
robots and between the agents and the environment. 
 

The main characteristics of a CCRS are as follows: 
• robots are autonomous and few  in number; 
• robots do not have access to centralized control; 
• robots are reactive  and  interactive; 
• robots are non-deterministic; 
• robots may or may not be identical. 

 
We use the above characteristics to discriminate a CCRS from 

a swarm robotic system with hundreds or thousands of identical 
robots. 
Guaranteeing safety, liveness, predictability, adaption and relia-
bility of robots and their high-level behaviors is crucial [1]. Hu-
man beings can perform sophisticated coordinated tasks due to 
inherent behavior of perception and inter-personal understanding, 
whereas robots perform sophisticated tasks in controlled envi-
ronments without such understanding. 
 

1.3 FAULT TOLERANCE IN CCRS 
 
The aim of fault tolerance in distributed systems is to provide proper 
solutions to the system faults upon their occurrence and make the 
system more dependable by increasing its reliability. The main moti-
vation of collective robotics research is the coordination of several 
systems (Gerkey and Matari’c, 2002; Agassounon et al., 2001; 
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Melhuish, 1999; Flocchini et al., 2000) and the robustness that can 
be achieved by the redundancy of the whole system (Parker, 1998; 
Goldberg and Matari’c, 2002; Fukuda et al., 1999). An increasing 
number of applications, such as space robotic missions (Chien et al., 
2000; Earon et al., 2001) where there is a strong advantage of obtain-
ing a more robust system, plan to exploit this type of information 
processing.  
 
The reason is that some faults in individual robots may cause the 
whole system to fail even though there are still many fault-free ro-
bots in the system. Since there is no centralized control and global 
information, for identifying which robot or which component in the 
robot is faulty is difficult.  
 
The fault-tolerance properties include safety and liveness. Safety 
properties mainly consist of guarantee of the absence of communi-
cation deadlocks. A deadlocked state is a state where there is no 
outgoing transition. Liveness properties consist of eventuality 
guarantee which means that eventually certain global-state vectors 
are reachable the concurrent robotic system tasks. Here, we pro-
pose how collective collaboration in a simple reactive robot can be 
obtained through the exploitation of synchronous local and global 
communications of an entire group. It is significantly faster than a 
product-based model and its minimal set of parameters allows 
identifying the effect of characteristics of individual robots on the 
team performance. This model provides a sound platform for per-
forming state exploration/model-checking without exponential 
state explosion, and also to verify fault-tolerant properties, namely 
safety and liveness, of the given set of robotic tasks. 

2. MOTIVATION 
 

Some tasks may be fatal to human beings. On a larger scale, ro-
bots could play a part in military, for search and rescue opera-
tions, in forests, lakes, for mining detection and cleaning, acting 
together in areas where it would be too dangerous or impractical 
for humans to go. But the field work is expected to be done by 
collective robots. A collaborative task is a scenario where collec-
tive robots work together to complete a task that is beyond the 
capabilities of any of its individual robots. It can be more useful 
than a unique specialized robot, mainly because of the robustness 
of the CCRS. Though one robot fails, the rest of the robots con-
tinue working. In the case of a single robot, this is not possible. 
CCRS  has many potential advantages over single-robot systems, 
including increased speed of task completion through parallelism; 
improved solutions for tasks that are inherently distributed in 
space, time or functionality ; cheaper solutions for complex ap-
plications that can be addressed with multiple specialized robots, 
rather than all-capable monolithic entities and increased robust-
ness and reliability through redundancy   (Parker 2008). 
 
In recent research of robotics, much attention has been paid on 
utilizing reinforcement learning for designing robot controllers. 
However, there still exist difficulties; one of them is the well 
known state explosion problem. As the state space for a learning 
system becomes continuous and high dimensional, its combinato-
rial state space exponentially explodes and the learning process 
becomes time-consuming [3]. In this paper, we address this prob-
lem also by proposing a computational model of what are called 
Communicating Minimal-Prefix Machines (CMPMs) that cut 

down the state space of the modeled distributed CCRS drastical-
ly. 
 

2.1 DISTRIBUTED CCRS 
 
The distributed control collective robotics can be divided into 
movement and formation control, distributed learning, and coor-
dination and task completion. The distributed hardware can pro-
vide strong robustness to failures, which is an advantage for self-
organizing robots. Collective robotics is a field of multi-robotics 
in which few number of robots are coordinated in a distributed 
and decentralized way, where the robots are autonomous in their 
decision, and there is no leader. It is noted, however, that our 
proposed distributed system can only contribute to general theo-
retical foundation and that further progress is needed for the ap-
plication of such methods to the CCRS. 

3. GENERATION OF CMPMS MODEL FOR RE-
DUCTION OF COMPUTATIONAL STATE SPACE 
  

This computational model is developed from a given specification 
consisting of a set of CFSMs. Each CFSM models a collaborative 
robot. We take up an example of a CCRS consisting of five different 
robots each modeled by a CFSM and represented by a correspond-
ing state-transition graph. We process this specification consisting 
of five CFSM graphs into a corresponding set of five unfolded trees 
whose leaves correspond to what are defined as cutoff states. Dif-
ferent CFSMs communicate by synchronous message passing upon 
synchronous/global actions. An event is an instance of an action. 
An action can be completely asynchronous/local to CFSM or a 
synchronous one involved by a set of two or more CFSMs from a 
given set. Each unfolded CFSM is called a CMPM for the follow-
ing reason: Each CMPM state represents an instance of  not only its 
corresponding local CFSM state, but also a vector of non-local 
CFSM states that are its causal predecessors due to synchronization 
in most recent past. This vector forms the synchronous environment 
of the concerned CMPM state, called its Minimal-Prefix (MP) vec-
tor unfolded from its corresponding CFSM. 
 
Figure 1 shows a set of five specified CFSMs. The states are 
 labeled with numbers and global, synchronous actions are labeled 
with upper case letters. The local. asynchronous actions local with-
in CFSMs are not labeled. Figure 2 shows the flow chart of each 
robot.  Figure 3 shows the synchronous actions performed while 
different CFSMs communicate by synchronous message passing, 
performing identical synchronous actions.  

 
Figure 4 lists the table showing the local and global transitions. Fig-
ure 5 shows the corresponding set of CMPMs which are nothing but 
the simulated CFSMs in global environment. In CMPM M1, the 
initial state vector is represented by (1a, 5a, 9a, 13a, 15a) where 
state (1a) represents the local component and (5a, 9a, 13a,15a) rep-
resents the MP vector of (1a) comprising the synchronous environ-
ment of the latter state in  CMPM M1. Similarly  in CMPM M2, the 
initial state vector is represented again by (1a,5a,9a,13a,15a) where 
(5a) represents the local component and (1a, 9a, 13a,15a) represents 
its MP vector comprising the synchronous environment of the local 
component (5a) of CMPM M2 and so on for CMPMs M3, M4 and 
M5 as well.  Similarly, the CMPM events A0, B0, C0, etc., of Fig. 4 
are instances of the corresponding CFSM actions A, B, C, etc., re-
spectively, of Fig. 1. 
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The leaves of the five CMPM trees represent the cut-off states. 
State (1b) is a cut-off state since the  Mp vector of  (1b) which is 
equal to (5b, 9b,13b,15b) and the Mp vector of (1a) which is 
(1a,5a,9a,13a,18a) are instances of the same FSM-state vector 
(1,5,9,13,18).  Therefore, the state and transition instances of the 
descendents of (1b,5b,9ba,13b,15b) will be identical to those of  
its ancestor state vector  (1a,5a,9a,13a,15a) and therefore need not 
be repeated and thus (1b,5b,9ba,13b,15b) forms the cut-off state 
by virtue of its ancestor  (1a,5a,9a,13a,15a) represented  as a leaf 
state represented by  CMPM tree M1. 

Since the CMPM structures simulate the given set of CFSMs, the 
set of successor states and transitions from a given CMPM state 
depend upon the CFSM vector it represents. 

 

 

 

 

Fig. 1. Set of five CFSM graphs depicting a CCRS 

 

Fig. 2. Flow chart of each robot’s controller 
 
 
 
 

ACTION LABELS  ACTIONS  

A Searching 

B Grabbing 

C Obstacle Avoidance 

D Target 

E Depositing 

G Resting 

F Reset. 
 

                                 Fig. 3. Actions and action labels 
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TRANSITION ACTION LOCAL GLOBAL SYNC 
HRONOUS 

ASYNC 
HRONOUS 

CFSM 1      
1-2  √   √ 
2-3 A  √ CFSMs:1,2,3,4,5  

3-4 C  √ CFSMs:1,4,5  

4-1 F  √ CFSMs:1,2,3,4,5  
CFSM 2      
5-6  √   √ 
6-7 A  √ CFSMs:1,2,3,4,5  
7-8 B  √ CFSMs:2,4,5  
8-5 F  √ CFSMs:1,2,3,4,5  
CFSM 3      
9-10  √   √ 
10-11 A  √ CFSMs:1,2,3,4,5  
11-12 D  √  √ 
12-9 F  √ CFSMs:1,2,3,4,5  
CFSM 4      
13-14  √   √ 
14-13  √   √ 
14-15 A  √ CFSMs:1,2,3,4,5  
15-16 B  √ CFSMs:2,4,5  
15-16  √   √ 
17-13 C  √ CFSMs:1,4,5  
15-17 E  √  √ 
16-13 F  √ CFSMs:1,2,3,4,5  
CFSM 5      
18-19  √   √ 
19-18  √   √ 
19-20 A  √ CFSMs:1,2,3,4,5  
20-21 B  √ CFSMs:2,4,5  
20-21  √   √ 
22-18 C  √ CFSMs:1,4,5  
20-22 G  √  √ 
21-18 F  √ CFSMs:1,2,3,4,5  

 
Fig. 4. Table listing global- and local-state transitions IJSER
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Fig. 5. (M1, M2, M3, M4, M5-CMPMs)  
 

4. MODEL-CHECKING 
 

Model-checking is the appropriate technique where there are 
many different scenarios of interaction between components in a 
system. The most effective and successful formal technique is 
model-checking. This is a highly automated approach used to 
verify that a formal model of a system satisfies the set of desired 
properties. 
 
The complexity of model-checking is that it involves checking all 
the states at most once. Thus, the complexity is linear in the num-
ber of total CMPM states, N. 

Our model-checking consists of reachability analysis of the state 
vectors.  The CMPMs model has distributed the synchronous 
global-state vectors into n interactive components. Model-
checking provides an approach to check the safety and liveness 
properties of finite-state systems. The global-state transition 
graph of traditional product-based model [11] is viewed as a sin-
gle finite Kripke structure. The main difficulty in using the mod-
el-checking approach with single Kripke structure is the state-
explosion problem which is avoided using our  CMPMs model 
which represents a concurrent set of finite Kripke structures 
which can be parallely explored, thus reducing the state-space 
explosion. 
 

4.1 MODEL-CHEKING OF FAULT TOLERANCE 
IN CCRS  

 
As explained in the introduction, the fault-tolerance properties 
consist of safety and liveness. Safety properties mainly consist of 
guarantee of the absence of communication deadlocks. A dead-
locked state is a state where there is no outgoing transition. 
Liveness properties consist of eventuality guarantee which means 
that eventually certain global-state vectors are reachable. A 
reachable state is a state such that there exists a path from the 
initial state to the state in question in the CMPM tree.  
 
We assume that all the interesting global-state vectors of scrutiny 
are synchronous global-state vectors whose reachability can be 
analysed in a parallel fashion by making depth-first analysis of 
the CMPM trees independently and thus concurrently. 

 
4.2 THE MODEL-CHECKING ALGORITHM 

 

Detection of communication deadlocks 
/* Parallel checking of all n CMPM-trees Mi, i= 1..n to check 
the reachability of leaf-states that are non-cutoff states. */ 
/*Sfi Set of states 
Rfi Set of transition relations of the form (sfi, afi, s’fi) 
S0fi Set of initial CFSM states 
 
Si Set of instances of states 
Ei set of events which are instances of actions 
Ri set of transitions of the form (s i, e i, s’i) 
S0i set of initial states*/ 
 
 
deadlock_state_listi : List of deadlocked states from 
 Mi, i= 1..n;/*set of n trees*/ 
find_dead_statesi(s i) /*s i  set of instances of states*/ 
{ 
   if s i is a (leaf-state  ∧  not (cut_off_state)) 
   { 
  add (si, dead_state_listi); 
     return; 
   } 
  else if s i is a leaf-state 
    return; 

            for all next_states s’i of s i  
              /* environment of O/P (s’i)  */ 
 
    return(find_dead_statesi(s’i)); 
} 
 
Main() 
{ 
   Deadlock_state_listi:= Null, for all i=1..n; 
   Par begin 
      For i=1..n do  find_dead_statesi(s0i); 

                          /*S0i set of initial states*/ 
   Par end; 
} 
 

Detection of Liveness Property 
 

/* This involves checking all the k CMPM trees Mi, i=1..k  
For the reachability of the given synchronous state vector.*/ 
    
 Chk_treei(s i, sf) /*Set of state in CFSM*/ 

          /* sf := Fsm_vector(s i)*/ 
    { 

  if (id(s i) = sfi   ∧  id(envj(s i)) = sfj 
/*I/P is equal to id of si in tree*/  

   /*(sfi)=initial state of CFSM */ 
 
for all j = 1..k, k≠ i) 

      return(true);  
         else if  si is a leaf state 
            return(false) ; 
      else for all next states s’i  
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such that: (si Ri s’i) is a transition do 
         { 
             successi:= Chk_treei(s’i, sf); 
    if (successi) return(true); 
    else continue; 
         } 

}/*Chk_treei() */ 
 

     Main() 
     { 
           Par begin 
             for i = 1..k do 
             successi := Chk_treei(s0i, sf); 
           Par end; 
      }/*Main()*/     
 
 

4.3 COMPLEXITY OF THE MODEL-CHECKING ALGO-
RITHMS 

 
Since the procedure of distributed model-checking is recursive, 
the proof of correctness can be done by inductive generation of 
state-vector space.  

The time complexities of both the algorithms involve depth-first 
recursive search of at most all n CMPM trees in parallel, checking 
all the states of each CMPM tree at most once. Thus, they are lin-
ear in the number of total states, N, of all the component CMPMs. 

 

      5.  CONCLUSIONS AND FUTURE WORK 

The structure theory aims at overcoming the state-space explo-
sion problem, inherent to the analysis of concurrent systems, by 
bridging structural and behavioral properties. 
We have proposed a couple of model-checking algorithms based 
on CMPMs model to verify the fault-tolerant properties namely 
safety and liveness. Safety involves the detection of 
communication deadlocked states. Liveness property involves the 
eventual occurrence of certain required synchronous global-state 
vectors.  
We have provided the generation and model-checking algorithms 
using a CCRS. The future work we propose is a swarm intelligent 
robotic system, which consists of hundreds of identical robots 
working concurrently on a common goal unlike our CCRS with a 
few, not-necessarily identical robots. 
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