
International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 541
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fault-Tolerance Verification in a
Distributed Collective Collaborative Robotic

System
Sungeetha Dakshinamurthy , Dr.Vasumathi Narayanan

Abstract- In this paper, we model a collective collaborative robotic system which acts as a distributed system, solving the problem which a
single robot cannot. A system consisting of n processes is modeled by a respective set of n communicating finite-state machines (CFSMs).
Robotic processes often run concurrently and communicate with each other to accomplish a common goal. We begin from a specification
of a set of robotic tasks in the form of CFSMs. As opposed to the traditional product automaton, built from a given specification of CFSMs,
whose state-space explodes, we build a state-compressed model out of CFSMs. The model is composed by simulating the specified set of
CFSMs in a global environment into a corresponding set of what are defined as communicating minimal prefix machines (CMPMs). The
states of CMPMs form a well-founded, partial order. This model truly represents sequence, choice/non-determinism and concurrency
exhibited by the concurrent robotic system tasks. The model provides a sound platform for performing state exploration/model-checking
without exponential state explosion to verify both safety and liveness properties of the given set of robotic tasks.

Index Terms— CCR, CFSMs, CMPMS, Safety, Liveness, exponential state explosion

—————————— ——————————

1 INTRODUCTION

1.1 COLLECTIVE AND COLLABORATIVE
 ROBOTIC SYSTEM.

In this paper, we model a collective collaborative robotic sys-
tem (CCRS) which acts as a distributed system solving the prob-
lem which a single robot cannot. Robotic processes often run con-
currently and communicate with each other to accomplish a com-
mon goal. This model truly represents sequence, choice and con-
currency, exhibited by the concurrent robotic system tasks. Here,
we propose how collective collaboration in a simple reactive can
be obtained through the exploitation of synchronous local and
global communication of entire group of robots. It is significantly
faster than a product-based model and its minimal set of parame-
ters allows identifying the effect of characteristics of individual
robots on the team performance. This model provides a sound
platform for performing state exploration/model-checking without
exponential state explosion, and also to verify fault-tolerant prop-
erties, namely safety and liveness, of the given set of robotic tasks.

1.2 WHAT IS A CCRS?

CCRS has been defined as a novel approach to the coordination of
few numbers of robots and as the study of how few numbers of ro-
bots can be designed to obtain a desired collective behavior which
emerges from local interactions among agents representing those
robots and between the agents and the environment.

The main characteristics of a CCRS are as follows:
• robots are autonomous and few in number;
• robots do not have access to centralized control;
• robots are reactive and interactive;
• robots are non-deterministic;
• robots may or may not be identical.

We use the above characteristics to discriminate a CCRS from

a swarm robotic system with hundreds or thousands of identical
robots.
Guaranteeing safety, liveness, predictability, adaption and relia-
bility of robots and their high-level behaviors is crucial [1]. Hu-
man beings can perform sophisticated coordinated tasks due to
inherent behavior of perception and inter-personal understanding,
whereas robots perform sophisticated tasks in controlled envi-
ronments without such understanding.

1.3 FAULT TOLERANCE IN CCRS

The aim of fault tolerance in distributed systems is to provide proper
solutions to the system faults upon their occurrence and make the
system more dependable by increasing its reliability. The main moti-
vation of collective robotics research is the coordination of several
systems (Gerkey and Matari’c, 2002; Agassounon et al., 2001;

————————————————
• Sungeetha Dakshinamurthy is Research scholar in Sathyabama University

(e-mail:sungeetha5@yahoo.com).
• Dr.Vasumathi Narayanan is Professor with St.Joseph’s college of

Engineering (e-mail: vasumathin@yahoo.com).

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 542
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Melhuish, 1999; Flocchini et al., 2000) and the robustness that can
be achieved by the redundancy of the whole system (Parker, 1998;
Goldberg and Matari’c, 2002; Fukuda et al., 1999). An increasing
number of applications, such as space robotic missions (Chien et al.,
2000; Earon et al., 2001) where there is a strong advantage of obtain-
ing a more robust system, plan to exploit this type of information
processing.

The reason is that some faults in individual robots may cause the
whole system to fail even though there are still many fault-free ro-
bots in the system. Since there is no centralized control and global
information, for identifying which robot or which component in the
robot is faulty is difficult.

The fault-tolerance properties include safety and liveness. Safety
properties mainly consist of guarantee of the absence of communi-
cation deadlocks. A deadlocked state is a state where there is no
outgoing transition. Liveness properties consist of eventuality
guarantee which means that eventually certain global-state vectors
are reachable the concurrent robotic system tasks. Here, we pro-
pose how collective collaboration in a simple reactive robot can be
obtained through the exploitation of synchronous local and global
communications of an entire group. It is significantly faster than a
product-based model and its minimal set of parameters allows
identifying the effect of characteristics of individual robots on the
team performance. This model provides a sound platform for per-
forming state exploration/model-checking without exponential
state explosion, and also to verify fault-tolerant properties, namely
safety and liveness, of the given set of robotic tasks.

2. MOTIVATION

Some tasks may be fatal to human beings. On a larger scale, ro-
bots could play a part in military, for search and rescue opera-
tions, in forests, lakes, for mining detection and cleaning, acting
together in areas where it would be too dangerous or impractical
for humans to go. But the field work is expected to be done by
collective robots. A collaborative task is a scenario where collec-
tive robots work together to complete a task that is beyond the
capabilities of any of its individual robots. It can be more useful
than a unique specialized robot, mainly because of the robustness
of the CCRS. Though one robot fails, the rest of the robots con-
tinue working. In the case of a single robot, this is not possible.
CCRS has many potential advantages over single-robot systems,
including increased speed of task completion through parallelism;
improved solutions for tasks that are inherently distributed in
space, time or functionality ; cheaper solutions for complex ap-
plications that can be addressed with multiple specialized robots,
rather than all-capable monolithic entities and increased robust-
ness and reliability through redundancy (Parker 2008).

In recent research of robotics, much attention has been paid on
utilizing reinforcement learning for designing robot controllers.
However, there still exist difficulties; one of them is the well
known state explosion problem. As the state space for a learning
system becomes continuous and high dimensional, its combinato-
rial state space exponentially explodes and the learning process
becomes time-consuming [3]. In this paper, we address this prob-
lem also by proposing a computational model of what are called
Communicating Minimal-Prefix Machines (CMPMs) that cut

down the state space of the modeled distributed CCRS drastical-
ly.

2.1 DISTRIBUTED CCRS

The distributed control collective robotics can be divided into
movement and formation control, distributed learning, and coor-
dination and task completion. The distributed hardware can pro-
vide strong robustness to failures, which is an advantage for self-
organizing robots. Collective robotics is a field of multi-robotics
in which few number of robots are coordinated in a distributed
and decentralized way, where the robots are autonomous in their
decision, and there is no leader. It is noted, however, that our
proposed distributed system can only contribute to general theo-
retical foundation and that further progress is needed for the ap-
plication of such methods to the CCRS.

3. GENERATION OF CMPMS MODEL FOR RE-
DUCTION OF COMPUTATIONAL STATE SPACE

This computational model is developed from a given specification
consisting of a set of CFSMs. Each CFSM models a collaborative
robot. We take up an example of a CCRS consisting of five different
robots each modeled by a CFSM and represented by a correspond-
ing state-transition graph. We process this specification consisting
of five CFSM graphs into a corresponding set of five unfolded trees
whose leaves correspond to what are defined as cutoff states. Dif-
ferent CFSMs communicate by synchronous message passing upon
synchronous/global actions. An event is an instance of an action.
An action can be completely asynchronous/local to CFSM or a
synchronous one involved by a set of two or more CFSMs from a
given set. Each unfolded CFSM is called a CMPM for the follow-
ing reason: Each CMPM state represents an instance of not only its
corresponding local CFSM state, but also a vector of non-local
CFSM states that are its causal predecessors due to synchronization
in most recent past. This vector forms the synchronous environment
of the concerned CMPM state, called its Minimal-Prefix (MP) vec-
tor unfolded from its corresponding CFSM.

Figure 1 shows a set of five specified CFSMs. The states are
 labeled with numbers and global, synchronous actions are labeled
with upper case letters. The local. asynchronous actions local with-
in CFSMs are not labeled. Figure 2 shows the flow chart of each
robot. Figure 3 shows the synchronous actions performed while
different CFSMs communicate by synchronous message passing,
performing identical synchronous actions.

Figure 4 lists the table showing the local and global transitions. Fig-
ure 5 shows the corresponding set of CMPMs which are nothing but
the simulated CFSMs in global environment. In CMPM M1, the
initial state vector is represented by (1a, 5a, 9a, 13a, 15a) where
state (1a) represents the local component and (5a, 9a, 13a,15a) rep-
resents the MP vector of (1a) comprising the synchronous environ-
ment of the latter state in CMPM M1. Similarly in CMPM M2, the
initial state vector is represented again by (1a,5a,9a,13a,15a) where
(5a) represents the local component and (1a, 9a, 13a,15a) represents
its MP vector comprising the synchronous environment of the local
component (5a) of CMPM M2 and so on for CMPMs M3, M4 and
M5 as well. Similarly, the CMPM events A0, B0, C0, etc., of Fig. 4
are instances of the corresponding CFSM actions A, B, C, etc., re-
spectively, of Fig. 1.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 543
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

The leaves of the five CMPM trees represent the cut-off states.
State (1b) is a cut-off state since the Mp vector of (1b) which is
equal to (5b, 9b,13b,15b) and the Mp vector of (1a) which is
(1a,5a,9a,13a,18a) are instances of the same FSM-state vector
(1,5,9,13,18). Therefore, the state and transition instances of the
descendents of (1b,5b,9ba,13b,15b) will be identical to those of
its ancestor state vector (1a,5a,9a,13a,15a) and therefore need not
be repeated and thus (1b,5b,9ba,13b,15b) forms the cut-off state
by virtue of its ancestor (1a,5a,9a,13a,15a) represented as a leaf
state represented by CMPM tree M1.

Since the CMPM structures simulate the given set of CFSMs, the
set of successor states and transitions from a given CMPM state
depend upon the CFSM vector it represents.

Fig. 1. Set of five CFSM graphs depicting a CCRS

Fig. 2. Flow chart of each robot’s controller

ACTION LABELS ACTIONS

A Searching

B Grabbing

C Obstacle Avoidance

D Target

E Depositing

G Resting

F Reset.

 Fig. 3. Actions and action labels

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 544
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

TRANSITION ACTION LOCAL GLOBAL SYNC
HRONOUS

ASYNC
HRONOUS

CFSM 1
1-2 √ √
2-3 A √ CFSMs:1,2,3,4,5

3-4 C √ CFSMs:1,4,5

4-1 F √ CFSMs:1,2,3,4,5
CFSM 2
5-6 √ √
6-7 A √ CFSMs:1,2,3,4,5
7-8 B √ CFSMs:2,4,5
8-5 F √ CFSMs:1,2,3,4,5
CFSM 3
9-10 √ √
10-11 A √ CFSMs:1,2,3,4,5
11-12 D √ √
12-9 F √ CFSMs:1,2,3,4,5
CFSM 4
13-14 √ √
14-13 √ √
14-15 A √ CFSMs:1,2,3,4,5
15-16 B √ CFSMs:2,4,5
15-16 √ √
17-13 C √ CFSMs:1,4,5
15-17 E √ √
16-13 F √ CFSMs:1,2,3,4,5
CFSM 5
18-19 √ √
19-18 √ √
19-20 A √ CFSMs:1,2,3,4,5
20-21 B √ CFSMs:2,4,5
20-21 √ √
22-18 C √ CFSMs:1,4,5
20-22 G √ √
21-18 F √ CFSMs:1,2,3,4,5

Fig. 4. Table listing global- and local-state transitions IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 545
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 5. (M1, M2, M3, M4, M5-CMPMs)

4. MODEL-CHECKING

Model-checking is the appropriate technique where there are
many different scenarios of interaction between components in a
system. The most effective and successful formal technique is
model-checking. This is a highly automated approach used to
verify that a formal model of a system satisfies the set of desired
properties.

The complexity of model-checking is that it involves checking all
the states at most once. Thus, the complexity is linear in the num-
ber of total CMPM states, N.

Our model-checking consists of reachability analysis of the state
vectors. The CMPMs model has distributed the synchronous
global-state vectors into n interactive components. Model-
checking provides an approach to check the safety and liveness
properties of finite-state systems. The global-state transition
graph of traditional product-based model [11] is viewed as a sin-
gle finite Kripke structure. The main difficulty in using the mod-
el-checking approach with single Kripke structure is the state-
explosion problem which is avoided using our CMPMs model
which represents a concurrent set of finite Kripke structures
which can be parallely explored, thus reducing the state-space
explosion.

4.1 MODEL-CHEKING OF FAULT TOLERANCE
IN CCRS

As explained in the introduction, the fault-tolerance properties
consist of safety and liveness. Safety properties mainly consist of
guarantee of the absence of communication deadlocks. A dead-
locked state is a state where there is no outgoing transition.
Liveness properties consist of eventuality guarantee which means
that eventually certain global-state vectors are reachable. A
reachable state is a state such that there exists a path from the
initial state to the state in question in the CMPM tree.

We assume that all the interesting global-state vectors of scrutiny
are synchronous global-state vectors whose reachability can be
analysed in a parallel fashion by making depth-first analysis of
the CMPM trees independently and thus concurrently.

4.2 THE MODEL-CHECKING ALGORITHM

Detection of communication deadlocks
/* Parallel checking of all n CMPM-trees Mi, i= 1..n to check
the reachability of leaf-states that are non-cutoff states. */
/*Sfi Set of states
Rfi Set of transition relations of the form (sfi, afi, s’fi)
S0fi Set of initial CFSM states

Si Set of instances of states
Ei set of events which are instances of actions
Ri set of transitions of the form (s i, e i, s’i)
S0i set of initial states*/

deadlock_state_listi : List of deadlocked states from
 Mi, i= 1..n;/*set of n trees*/
find_dead_statesi(s i) /*s i set of instances of states*/
{
 if s i is a (leaf-state ∧ not (cut_off_state))
 {
 add (si, dead_state_listi);
 return;
 }
 else if s i is a leaf-state
 return;

 for all next_states s’i of s i
 /* environment of O/P (s’i) */

 return(find_dead_statesi(s’i));
}

Main()
{
 Deadlock_state_listi:= Null, for all i=1..n;
 Par begin
 For i=1..n do find_dead_statesi(s0i);

 /*S0i set of initial states*/
 Par end;
}

Detection of Liveness Property

/* This involves checking all the k CMPM trees Mi, i=1..k
For the reachability of the given synchronous state vector.*/

 Chk_treei(s i, sf) /*Set of state in CFSM*/

 /* sf := Fsm_vector(s i)*/
 {

 if (id(s i) = sfi ∧ id(envj(s i)) = sfj
/*I/P is equal to id of si in tree*/

 /*(sfi)=initial state of CFSM */

for all j = 1..k, k≠ i)

 return(true);
 else if si is a leaf state
 return(false) ;
 else for all next states s’i

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 3, March-2014 546
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

such that: (si Ri s’i) is a transition do
 {
 successi:= Chk_treei(s’i, sf);
 if (successi) return(true);
 else continue;
 }

}/*Chk_treei() */

 Main()
 {
 Par begin
 for i = 1..k do
 successi := Chk_treei(s0i, sf);
 Par end;
 }/*Main()*/

4.3 COMPLEXITY OF THE MODEL-CHECKING ALGO-
RITHMS

Since the procedure of distributed model-checking is recursive,
the proof of correctness can be done by inductive generation of
state-vector space.

The time complexities of both the algorithms involve depth-first
recursive search of at most all n CMPM trees in parallel, checking
all the states of each CMPM tree at most once. Thus, they are lin-
ear in the number of total states, N, of all the component CMPMs.

 5. CONCLUSIONS AND FUTURE WORK

The structure theory aims at overcoming the state-space explo-
sion problem, inherent to the analysis of concurrent systems, by
bridging structural and behavioral properties.
We have proposed a couple of model-checking algorithms based
on CMPMs model to verify the fault-tolerant properties namely
safety and liveness. Safety involves the detection of
communication deadlocked states. Liveness property involves the
eventual occurrence of certain required synchronous global-state
vectors.
We have provided the generation and model-checking algorithms
using a CCRS. The future work we propose is a swarm intelligent
robotic system, which consists of hundreds of identical robots
working concurrently on a common goal unlike our CCRS with a
few, not-necessarily identical robots.

References

[1] Kondo T., Ito K., “A reinforcement learning using adaptive state

space construction strategy for real autonomous mobile robots”, 41st
SICE Annual Conference, Vol 5, pp3139-3144, Aug 2002.

[2] Vasumathi, K. Narayanan, “A state-oriented, Partial-order model
and Logic for Distributed Systems Verification, Ph.D. Thesis,
Concordia University, Montreal, 1997.

[3] R.Kurshan et al.,”Lessons Learned from Model-checking a NASA
robot controller”, Formal Methods in System Design, Vol-25, No:2-
3, pp241-270.

[4] E.Teruel, M.Silva et al, “Choice-free Petri nets: a model for deter-
ministic concurrent systems with bulk services and arrivals” ,IEEE

Transactions on Systems, Man and Cybernetics”, Vol 27, Jan 1997,
pp73-83.

[5] Bernardi S, Campos J., “Computation of performance of Real-time
systems using Timed Petri-nets, IEEE Transactions on Industrial In-
formatics”, May 2009, Vol 5, No:2, pp168-180.

[6] D.A. Stuart et al., “Simulation-Verification: Biting at the state-
explosion problem”, IEEE Transactions on SE, Vol 27, No:7, July
2001.

[7] Peter Bokor et al, “Efficient modelchecking of fault-tolerant dis-
tributed protocols” DSN 2011, pp.73-84.

[8] Edmund Clarke et al, “Progress on the state-explosion problem in
model-checking”, Informatics 2001, pp. 176-194.

[9] K.L. McMillan, “Symbolic Model Checking: An approach to the
state explosion problem” Ph.D. Thesis, May, 1992 CMU-CS-92-
131.

[10] E. M. Clarke and E. A. Emerson. “Synthesis of synchronization
skeletons for branching time temporal logic”, In Logic of Pro-
grams:Workshop, LNCS, 1981.

[11] E. M. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic verifica-
tion of finite-state concurrent system using temporal logic”, In Pro-
ceedings of the Tenth Annual ACM Symposium on Principles of
Programming Languages (POPL), January 1983.

[12] E. M. Clarke Jr., E. A. Emerson, and A. P. Sistla. Automatic verifi-
cation of finite-stateconcurrent systems using temporal logic speci-
fications. ACM TOPLAS, 8(2):244–263, Apr.1986.

[13] E. Clarke, O. Grumberg, and D. Peled. “Model Checking”, MIT
Publishers, 1999.

[14] E. Clarke and H. Schlingloff. Model checking. In J. Robinson and
A. Voronkov, editors,Handbook of Automated Reasoning. Elsevier,
2000.

[15] J.Park et al,“A Theorem Prover for Boolean BI”,ACM International
conference on Principles of Programming Language, POPL 2013.

[16] C.A.R.Hoare, “Communicating Sequential Processes”, Prentice
Hall 1984.

[17] Sungeetha Dakshinamurthy and Vasumathi Narayanan, “A fully-
distributed checkpointing-protocol for fault-tolerance in real-time
distributed systems”, in National IETE Conf., 2012.

[18] Sungeetha Dakshinamurthy and Vasumathi Narayanan, “A parallel
algorithm for model-transformation of interactive state machine
specification”,Inetrnational Journal of Wisdom Based Computing
,Vol. 2 No:1,pp 52-57,Apr 2012 .

[19] Sungeetha Dakshinamurthy and Vasumathi Narayanan, “A Model-
checking Algorithm for Formal verification of Peer-to-peer Fault-
Tolerant Networks”, (LNIT ISSN 2301-3788) Lecture Notes on In-
formation Theory, Vol. 1 No:3,pp 128-131,Sep 2013 .

[20] Sungeetha Dakshinamurthy and Dr.Vasumathi Narayanan “A
Component-based Approach to Verification of Formal Software
Models to Check Safety Properties of Distributed Systems” (LNSE
ISSN 2301-3559) Lecture Notes on Software Engineering,Vol. 1
No:2,pp 186-189,Apr 2013 .

IJSER

http://www.ijser.org/

	1 Introduction
	4.2 The Model-Checking Algorithm
	Detection of communication deadlocks
	Detection of Liveness Property

	We have proposed a couple of model-checking algorithms based on CMPMs model to verify the fault-tolerant properties namely safety and liveness. Safety involves the detection of communication deadlocked states. Liveness property involves the eventual o...
	References

